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Abstract We propose a sequential learning policy for ranking and selection problems,
where we use a non-parametric procedure for estimating the value of a policy. Our estima-
tion approach aggregates over a set of kernel functions in order to achieve a more consistent
estimator. Each element in the kernel estimation set uses a different bandwidth to achieve
better aggregation. The final estimate uses a weighting scheme with the inverse mean square
errors of the kernel estimators as weights. This weighting scheme is shown to be optimal
under independent kernel estimators. For choosing the measurement, we employ the knowl-
edge gradient policy that relies on predictive distributions to calculate the optimal sampling
point. Our method allows a setting where the beliefs are expected to be correlated but the
correlation structure is unknown beforehand. Moreover, the proposed policy is shown to be
asymptotically optimal.

Keywords Bayesian global optimization · Knowledge gradient ·
Non-parametric estimation

1 Introduction

We consider the problem of maximizing an unknown function over a finite set of possi-
ble alternatives. Our method can theoretically handle any number of finite alternatives but
computational requirements limit this number to be on the order of thousands. We
make sequential measurements from the function, obtain noisy measurements and these
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measurements are used to estimate the true values of the function. We use kernel estimation,
a non-parametric estimation method and therefore we do not assume that the unknown func-
tion belongs to a certain parametric class. In addition, we do not assume Lipschitz continuity
or concavity. However, we make use of the fact that if two alternatives are close to each
other, their values should be similar too, a property that will arise when using continuous
functions. Moreover, kernel estimation methods have convergence rates that depend on the
Hölder condition number of the function. For Lipschitz functions, this condition number is
equal to 1 and as the condition number increases the set of functions becomes larger. There-
fore, even though no assumptions are made on the structure of the function, our estimation
procedure converges faster if the function is bounded or Lipschitz. We use a Bayesian frame-
work and start by assuming we have a normal prior distribution of beliefs about the values
of the function.

This problem arises in an off-line setting, where it is known as the ranking and selection
problem, and an on-line setting, where it is known as the multi armed bandit problem. Each
alternative x has a reward associated with it, and we are asked to choose one from them.
However, the measurements are often noisy and obtaining them could be expensive. For
instance, consider a simulator for a queueing model with many inputs. Often, these simulators
have very long run times and noisy results. This limits the number of different policies that
can be tried in a given time, therefore finding the optimum quickly becomes a major concern
as well.

Other examples of ranking and selection where a non-parametric belief model might apply
include:

– Policy optimization for energy storage. Energy producers have to adjust the amount of
energy to produce in a day to match the demand. They frequently run into the problem
of over producing or underproducing energy in a day. We face the problem of tuning a
parametrized policy on the basis of noisy measurements.

– Design of fuel cells. A fuel cell is parameterized by design parameters such as the size
of the plate used for the anode or the cathode, the distance between the plates, and the
concentration of the solution. These need to be tuned in a laboratory setting, requiring
time and money for each experiment.

– Simulation optimization. The area of simulation optimization deals with optimizing func-
tions where the function is a black box, that is, not much about the function’s structure
is known. Also, in most cases, evaluation from the black box take a significant amount
of time, therefore a fast rate of convergence is needed.

Although the ranking and selection problem has been extensively studied, most of the
previous work concentrates on problems where beliefs about the alternatives are independent
[29]. Even when the measurements are used to update the global estimate, using current
observations to estimate nearby alternatives (or the future benefits that might be obtained by
measuring nearby points) is not often considered in the decision making process. However,
whether it is the parameters for a queueing simulator or commitment levels in an energy
model, the values of nearby measurements will be similar. In other words, alternatives close to
each other will exhibit correlated beliefs. There is a small literature that can handle correlated
beliefs; [11] makes significant use of the covariance structure for decision making, [23] fits a
Gaussian process which has a fixed special correlation structure depending on the distances
between the alternatives. A recent paper [37] introduces entropy minimization-based methods
for Gaussian Processes. Other examples include various meta-models, where the statistical
fitting procedure imposes its own covariance structure [2].
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The optimization of noisy functions, broadly referred to as stochastic search, has been
studied thoroughly since the seminal paper [33] which introduces the idea of stochastic
gradient algorithms. An extensive coverage of the literature for stochastic search methods
can be found in [35].

Optimal learning methods approach the problem in a different way and consider the value
of information from each measurement. Function evaluations for optimal learning are made
in a smarter way to achieve better convergence rates. There are a variety of algorithms for
both discrete and continuous settings. When the alternatives are discrete, various heuristics
such as interval estimation, epsilon-greedy exploration and Boltzmann exploration can be
used [31,36]. The idea of making measurements based on the marginal value of information
is introduced by [20] under the name (R1, . . . , R1) policy. This idea is extended under the
name knowledge gradient using a Bayesian approach and estimates the value of measuring
an alternative by the predictive distributions of the means [10]. The knowledge gradient is
extended to handle correlations among the alternatives [11].

When the alternatives are continuous, commonly used methods are gradient estimation
[13,35], meta-model methods such as response surface methods [2], and a series of heuristics
such as tabu search and genetic algorithms [30]. Gradient estimation deals with estimating
the gradient of the function in a noisy setting, and using the gradient as a direction of steepest
descent. Response Surface Methodology (RSM) fits a linear regression (or a polynomial) to
obtain a noisy gradient [2,8].

Recently, there is a growing trend in learning problems where the underlying process has a
given structure. [6] considers a problem where they maximize over a known function whose
parameters depend on an unknown monotone function. Their method is suitable for economic
problems where demand or supply curves will most likely have this structure. They make
use of B-splines as they are well suited to monotonicity constraints. However, their method
cannot be extended to alternatives in two or more dimensions and they do not propose a well
structured algorithm for their sequential measurement choices.

In the online learning setting with discrete alternatives, the optimal policy is given in
[18] and [19], using a method that has become known as Gittins indices. Unfortunately,
although their policy is optimal, their decision making formula requires solving for a
constant dependent on the problem setting. Numerical approximations for the Gittins index
are proposed in [7]. The online learning problem with continuous decisions has also been stud-
ied under various names. Agrawal has first introduced the continuum armed bandit problem
and has come up with an algorithm which makes use of kernels to estimate nearby points
with upper bounds on regret [1]. Tighter bounds on regret have been obtained by [26]. The
response surface bandit problem, introduced in [17], considers a similar problem but assumes
a polynomial structure in the rewards. They fit a quadratic surface to the rewards and use
interval estimation methods. A recent paper, [34], introduces one-step ahead policies for
online learning problems [25], more detail about their algorithm is given in Sect. 4.2.

We deal with an offline learning setting where the beliefs are correlated. We make use
of the knowledge gradient with correlated beliefs [11]. This method, which uses a lookup
table belief structure, is explained in detail in Sect. 4.1. We use a version of this knowledge
gradient policy, although we implement a more sophisticated estimation procedure based on
aggregation of kernels. Our approach is a general case of the method proposed by [27], where
the estimators are hierarchical aggregates of the values. Our policy can also be seen as an
extension of the knowledge gradient with linear beliefs [28] to non-parametric beliefs.

This paper makes the following contributions: (1) We propose a sequential Bayesian
learning method that aggregates a set of estimators. (2) We construct a framework for the
knowledge gradient with correlated beliefs where non-parametric estimation methods can be
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used. (3) We show experimentally that our method is competitive and enjoys high convergence
rates.

We first introduce our model in Sect. 2. In Sect. 3, we describe our kernel estimation
method, which uses a dictionary of bandwidths to circumvent the bandwidth optimization
problem. In Sect. 4, we derive the knowledge gradient for this model. In Sect. 5, we present
an asymptotic convergence proof. A demonstration of our algorithm is given in Sect. 6 and
we propose an extension of our policy in Sect. 7. Finally in Sect. 8 we numerically compare
our algorithm to other offline learning methods and present our numerical results.

2 Model

We denote the unknown function μ(x) : X �−→ R, where X ⊂ R
d is a finite set with M

elements, in other words X = {x1, . . . , xM } where xi ∈ R
d . With an abuse of notation, we

also use μx for μ(x). We make sequential measurements from μx at time steps n ∈ N+. At
time n, we decide to measure μxn = μ (xn) and we observe

yn+1
x = μx + εn+1

x ,

where the sampling error εn+1
x is assumed to be independent from other errors and have a

normal distribution with zero mean and known variance λx . That is, εn+1
x ∼ N (0, λx ). For the

sake of simplicity, we sometimes use βε
x = λ−1

x to denote the precision of the measurement.
We let the filtration Fn be the sigma-algebra generated by {(x0, y1

x0

)
, . . . ,

(
xn−1,

yn
xn−1

)}. As the decisions are made progressively, the decision at time n, xn , will depend
on the outcomes of the previous samples. In other words, xn is an Fn-measurable random
variable.

We let E
[•|Fn

] = E
n [•] be the conditional expectation with respect to Fn . We use

μn
x = E

n [μx ] to indicate our estimate for μx at time step n.
We assume that we have a Gaussian prior on the value of μ, that is,

μ ∼ N (
μ0,Σ0) .

Our goal is to find the optimum point in an offline learning setting. For offline learning,
we consider the case where we are allowed to make N measurements before making our final
decision at time step n = N , when we choose

x N = arg max
x∈X

μN
x .

We denote by � the set of admissible measurement policies. The problem of finding the
best policy can be written as,

sup
π∈�

E
π

[
max
x∈X

μN
x

]
,

where E
π denotes the expectation taken over possible outcomes when the policy π ∈ � is

used.
For the online learning problems, we obtain the reward as we measure and alternative,

therefore, the problem of finding the best policy is,

sup
π∈�

E
π

[
N∑

n=0

γ nμxn

]

,
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where γ , the discount factor is between 0 and 1 and N is the horizon of the problem. If γ is
strictly smaller than 1, N can also be taken as infinity.

3 Estimation of μx

We propose a method that aggregates a set of different kernel estimation methods denoted
by K. By this we mean that the elements of K = {0, 1, . . . , i, . . . , k}, use different estima-
tion methods (Nadaraya-Watson versus higher order polynomial regression) and/or different
bandwidths. This allows us to have a range of estimators that utilize different bandwidths. For
any i ∈ K, the estimate for μx at time n is denoted by μ

i,n
x . Similarly we will use Ki to denote

the kernel function used for the estimator i . We let μ
0,n
x be the sample mean estimate for μx ,

which may simply be the prior if there are no observations at x . Furthermore, although our
method can be used with any non-parametric estimation method that uses linearly weighted
sample averages (local linear estimation, Nadaraya-Watson, Gasser-Muller etc.), for the sake
of simplicity and ease of presentation we work with the Nadaraya-Watson estimator. That is
the estimate using kernel i is given by

μi,n
x =

∑
x ′∈X Ki (x, x ′)μ0,n

x ′
∑

x ′∈X Ki (x, x ′)
.

All of our results can easily be extended to other weighted estimation methods.
The main estimate for μx at time n is formed by taking a weighted average of these

estimation methods. The weights are both iteration and state-dependent, and we denote each
weight by w

i,n
x , producing the estimator

μn
x =

∑

i∈K
wi,n

x μi,n
x .

Aggregating different estimates to obtain an overall estimate has been studied rigorously
in both statistics and machine learning communities [5,12,24]. However, the focus is either
prediction or estimation in both of these literatures. [24] proposes a stochastic gradient
algorithm which is used to decrease the estimation error ‖μ − μn‖2. The same problem is
studied in [5] where the weights are sequentially determined. Finally, the boosting algorithm
uses a reweighted aggregation scheme to increase the accuracy of prediction [12].

Before introducing the weights we use, we make an assumption regarding our estimation
procedures. We also note that our method can be used with any set of weights and the
convergence results still hold if these weights go to zero for biased estimators.

Assumption 1 For a given kernel i ∈ K, we assume the value of the random variable

μi
x =

∑
x ′∈X Ki (x, x ′)μx ′

∑
x ′∈X Ki (x, x ′)

is distributed by μi
x ∼ N (

μx , ν
i
x

)
, where νi

x is the variance of
(
μi

x − μx
)

under our prior belief. Furthermore,
(
μi

x − μx
)

is distributed independently from(
μi ′

x − μx

)
where i, i ′ ∈ K and i 	= i ′.

Essentially, this is an assumption on Σ0. Because our weights for the kernels are adaptive,
our assumption on Σ changes as we collect more measurements. The normality assumption
of the kernel estimate is satisfied easily if we use an empirical Bayes approach and take μ

0,0
x

to be constant for all x . If the prior has a different structure, then the kernel bandwidths have to
be chosen such that μi,0

x = μ
0,0
x for all i ∈ K. This is easily doable by solving a linear system

of equations. The independence assumption requires that for each point, the kernels cover
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mutually disjoint intervals. In other words, this assumption requires that kernels with larger
bandwidths do not make use of the measurements closer to the center of the kernel. However,
in our numerical experiments, we did not find any difference in the empirical performance
of our method when we used such kernels instead of kernels with overlapping domains.

Note that the values μi
x are random variables that depend on μx . The variance of the

random variable is denoted by νi
x . When we implement our estimation procedure, νi

x will
be used to denote the squared bias of the i th estimator. Thus, estimators with high biases,
which generally tend to be estimators with larger bandwidhts, are allowed to have their “true”
value, given by μi

x , farther away from the true value of the function at that point. Similarly,
estimators with low biases will have lower values for νi

x , and μi
x will be expected to be closer

to μx .
Furthermore, as it will be shown in Sect. 5, our policy measures all of the alternatives

infinitely often even if this assumption does not hold. Also, with this weighting scheme,
the bandwidth of the final estimator goes to 0. It is a very well known fact that under these
conditions, the kernel estimators will recover the true values and the effect of the bias will
decline as the sample size increases.

This assumption gives us weights that are inversely proportional to the estimators’ mean
square errors as Proposition 1 shows (the proof is given in the Appendix).

Proposition 1 Let μ
i,n
x be the posterior mean of μi

x at time step n, and
(
σ

i,n
x

)2
its variance.

Then, under Assumption 1, the posterior belief on μx given observations up to time n, is
normally distributed with mean and precision given by,

μn
x = 1

βn
x

(

β0
x μ0

x +
∑

i∈K
((σ i,n

x )2 + νi
x )

−1μi,n
x

)

,

βn
x = β0

x +
∑

i∈K
((σ i,n

x )2 + νi
x )

−1.

With Proposition 1, we use the weights

wi,n
x = ((σ

i,n
x )2 + ν

i,n
x )−1

∑
i ′∈K((σ

i ′,n
x )2 + ν

i ′,n
x )−1

, (1)

where
(
σ

i,n
x

)2 := V ar(μi
x |Fn) and ν

i,n
x :=

(
Bias(μi,n

x |Fn)
)2 = (En[μi,n

x − μx ])2.

To summarize, after weighting each of our kernel estimators μ
i,n
x by w

i,n
x , our estimates

for μx at time n will be given by,

μn
x =

∑

i∈K
wi,n

x μi,n
x

=
∑

i∈K

((σ
i,n
x )2 + ν

i,n
x )−1 ∑M

j=1 βn
x Ki (x, x j )μ

0,n
x j(∑

i ′∈K((σ
i ′,n
x )2 + ν

i ′,n
x )−1

) (∑M
j=1 βn

x Ki (x, x j )
) .
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3.1 Updating equations for μn
x

At time n, we measure xn and observe yn+1
x and use the updating equations for the normal

prior with normally distributed observations. This gives us

μ0,n+1
x = (

βn
x μ0,n

x + βε
x yn+1

x

)
/βn+1

x ,

βn+1
x = βn

x + βε
x ,

where μ
0,n
x is used to denote the base level estimates. μ

i,n+1
x is not updated unless

Ki (x, xn) > 0. If Ki (x, xn) > 0,

μi,n+1
x =

∑
x ′∈X βn+1

x ′ Ki (x, x ′)(μ0,n+1
x ′ )

∑
x ′∈X βn+1

x ′ Ki (x, x ′)

=
∑

x ′ 	=xn
βn

x ′ Ki (x, x ′)(μ0,n
x ′ ) + Ki (x, xn)(βn

xn
μ

0,n
xn + βε

xn
yn+1

xn
)

∑
x ′∈X βn+1

x ′ Ki (x, x ′)
.

The weights are given by,

wi,n
x = ((σ

i,n
x )2 + ν

i,n
x )−1

∑
i ′∈K((σ

i ′,n
x )2 + ν

i ′,n
x )−1

.

Assuming independence among the estimates of different estimation methods (which is
also assumed in Assumption 1), we can use

(
σ i,n

x

)2 = V ar(μi
x |Fn) =

∑
x ′∈X (βn

x ′ Ki (x, x ′))2V ar(μ0
x ′ |Fn)

(
∑

x ′∈X βn
x ′ Ki (x, x ′))2

=
∑

x ′∈X βn
x ′ Ki (x, x ′)2

(
∑

x ′∈X βn
x ′ Ki (x, x ′))2 .

We further approximate the bias using

νi,n
x = (μi,n

x − μ0,n
x )2,

as this is the estimate for the variance of μx − μi
x .

By Proposition 1, the variance for the final estimate is given by,

(σ n
2 )2 =

(
∑

i∈K
((σ i,n

x )2 + νi
x )

−1

)−1

.

4 Measurement decision

In this section, we first review the Knowledge Gradient with Correlated Beliefs (KGCB)
which is a ranking and selection policy [11]. Our measurement decisions are made using a
variation of KGCB, and we develop this in Sect. 4.2. Knowledge gradient policies are easily
adapted to deal with online learning problems [34], and we review this method in Sect. 4.3.

4.1 Knowledge gradient with correlated beliefs (KGCB)

The Knowledge Gradient with Correlated Beliefs (KGCB), an extension of the (R1, . . . , R1)

policy [20], is a myopic policy for sequential learning for correlated alternatives [11].
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Let μ be the (random) values of all alternatives x ∈ X . Then, by assuming we have a
prior on μ such that

μ ∼ N (μ0,Σ0),

and by denoting Sn = (μn,Σn) as the knowledge state of the state at time n, the KGCB
policy picks the alternative by computing the marginal value from the information obtained
by measuring x . The knowledge gradient value is given by,

vK G,n
x = E

[
max

y
μn+1

y − max
y

μn
y |Sn, xn = x

]
. (2)

The knowledge gradient policy then chooses

xn = arg max
x

vK G,n
x .

In other words, in a ranking and selection setting, where we are allowed to make one more
measurement before we settle on a decision, KGCB selects the alternative which produces
the largest expected value from a measurement. In a Bayesian setting with Gaussian priors
and Gaussian measurements, the updating equations for μn+1 and Σn+1 are given by

μn+1(x) = μn − yn+1 − μn
x

λx + 
n
x,x

Σnex ,


n+1(x) = 
n − 
nex eT
x Σn

λx + 
n
x,x

,

where ex is a column vector and is equal to zero except at the x th location where it equals 1
[14]. Then, we can rewrite the time n conditional distribution of μn+1 as,

μn+1 = μn + σ̃ (Σn, xn)Z ,

where

σ̃ (Σn, xn) = Σnex√
λx + 
n

x,x
,

and Z is a standard normal random variable. Here the parameter σ̃ (Σn, xn) represents the
predictive standard deviation of μn+1

x given Fn . Then, plugging this in to Eq. (2) we obtain,

vK G,n
x = E[max

y
(μn

y + σ̃y(Σ
n, xn)Z)|Sn, xn = x] − max

y
μn

y . (3)

To compute this value, we need to integrate the value of the normal random variable over a con-
vex function which is given as the pointwise maximum of affine functions μn

y +σ̃y(Σ
n, xn)Z .

The above decision can be computed with an algorithm of complexity O(M2 log(M)) [11].
To demonstrate the algorithm for the calculation of v

K G,n
x , we denote an

j = μn
x j

, bn
j (x) =

σ̃x,x j (Σ
n, xn). The algorithm first arranges the alternatives so that the slopes bn

j (x) are in
increasing order, then takes out terms a j , b j if there is some j ′ such that b j = b j ′ and
a j > a j ′ . Finally, the KGCB algorithm removes alternatives that are dominated by other
alternatives, that is, it drops a j ′ , b j ′ if for all Z ∈ R there exists some j such that j 	= j ′ and
a j ′ + b j ′ Z ≤ a j + b j Z . After the redundant alternatives are removed with this procedure,
the knowledge gradient value is given by,

vK G,n
x =

∑

j=1,...,|X |−1

(bn
j+1(x) − bn

j (x)) f

(

−
∣∣∣∣∣

an
j+1 − an

j

bn
j (x) − bn

j+1(x)

∣∣∣∣∣

)

, (4)
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where f (z) = φ(z)+z�(z), and φ(z) is the normal density and �(z) is the normal cumulative
distribution function.

4.2 Knowledge gradient with non-parametric estimation (KGNP)

In this section, we derive the knowledge gradient when we are using a non-parametric belief
structure. As given in Sect. 4.1, the knowledge gradient value for alternative x can be written
as

vK G,n
x = E

[
max

y
μn+1

y − max
y

μn
y |Sn, xn = x

]
.

In our approach, μn+1
y is given as a weighted sum of other estimators, μ

i,n+1
y , which can be

rewritten as,

μi,n+1
x =

∑
x ′ 	=xn

βx ′ Ki (x, x ′)(μ0,n
x ′ )

∑
x ′∈X βn+1

x ′ Ki (x, x ′)
+ Ki (x, xn)(βn

xn
μ

0,n
xn + βε

xn
yn+1

xn
)

∑
x ′∈X βn+1

x ′ Ki (x, x ′)
.

Then, letting Ai
n+1(x, xn) = ∑

x ′∈X βn
x ′ Ki (x, x ′) + βε

xn
Ki (x, xn), we can write

μi,n+1
x = μ

i,n
x (

∑
x ′∈X βn

x ′ Ki (x, x ′)) + μ
i,n
x βε

xn
Ki (x, xn)

Ai
n+1(x, xn)

+ βε
xn

Ki (x, xn)

Ai
n+1(x, xn)

(
yn+1

xn
− μi,n

x

)

= μi,n
x + βε

xn
Ki (x, xn)

Ai
n+1(x, xn)

(
μn

xn
− μi,n

x

)
+ βε

xn
Ki (x, xn)

Ai
n+1(x, xn)

(
yn+1

xn
− μn

xn

)

= μi,n
x + βε

xn
Ki (x, xn)

Ai
n+1(x, xn)

(
μn

xn
− μi,n

x

)
+ σ̃ (x, xn, i)Z ,

where, Z = (
yn+1

xn
− μn

xn

)
/
√

((σ n
xn

)2 + λxn ) is a standard normal random variable and

σ̃ (x, xn, i) =
√

((σ n
xn

)2 + λxn )
βε

xn
Ki (x, xn)

Ai
n+1(x, xn)

.

Given xn is observed at time n, using the equations above we can rewrite μn+1
x as,

μn+1
x =

∑

i∈K
wi,n+1

x μi,n
x +

∑

i∈K
wi,n+1

x

βε
xn

Ki (x, xn)

Ai
n+1(x, xn)

(μn
xn

− μi,n
x )

+
∑

i∈K
wi,n+1

x σ̃ (x, xn, i)Z

=
∑

i∈K
wi,n+1

x

(

1 − βε
xn

Ki (x, xn)

Ai
n+1(x, xn)

)

μi,n
x + μn

xn

∑

i∈K
wi,n+1

x

βε
xn

Ki (x, xn)

Ai
n+1(x, xn)

+ Z
∑

i∈K
wi,n+1

x σ̃ (x, xn, i).

As the weights in the next period will change according to the outcome of the measurement,
we also need to adapt our weights for the knowledge gradient calculation. Following [27],
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we use predictive weights which are the expected values of the weights for the next time step.
These weights are given by:

w̄i,n
x (x) ∝

(
∑

i∈K
((σ̄ i,n

x )2 + νi,n
x )−1

)−1

,

where,

(σ̄ i,n
x )2 = V ar(μi,n+1

x |Fn) =
∑

x ′∈X (βn+1
x ′ Ki (x, x ′))2V ar(μ0

x ′ |Fn)

(
∑

x ′∈X βn+1
x ′ Ki (x, x ′))2

=
∑

x ′∈X βn+1
x ′ Ki (x, x ′)2

(
∑

x ′∈X βn+1
x ′ Ki (x, x ′))2

.

Combining the equations for μ
i,n+1
x and the predictive weights, we obtain the knowledge

gradient,

vK G,n
x (Sn) = E

[
max
x ′∈X

an
x ′(x) + bn

x ′(x)Z |Sn
]

− max
x ′∈X

μn
x ,

where

an
x (xn) =

∑

i∈K
wi,n+1

x

(

1 − βε
xn

Ki (x, xn)

Ai
n+1(x, xn)

)

μi,n
x + μn

xn

∑

i∈K
wi,n+1

x

βε
xn

Ki (x, xn)

Ai
n+1(x, xn)

, (5)

bn
x (xn) =

∑

i∈K
wi,n+1

x σ̃ (x, xn, i). (6)

This is in the same form of KGCB as in [11], but adapted for our kernel-based belief
model. By applying the procedure described in Sect. 4.1, the knowledge gradient can be
computed using

vK G,n
x (Sn) =

∑

j=1,...,|X |−1

(bn
j+1(x) − bn

j (x)) f

(

−
∣∣∣∣∣

an
j+1 − an

j

bn
j (x) − bn

j+1(x)

∣∣∣∣∣

)

.

4.3 Knowledge gradient for online learning

The knowledge gradient can easily be adapted to online learning problems. Consider a user
who is allowed to collect information for one more time-step. After the current time period,
he will repeatedly choose the alternative which he believes to be the best. That is, if we are
at time step n and we are allowed to make a total of N choices, our expected reward after the
current experiment is given by,

V n(Sn) = (N − n + 1) max
x

μn
x .

Then, the KG value for alternative x for online learning is given by

vO L−K G,n
x = μn

x + (N − n)vK G,n
x ,

where v
K G,n
x is the knowledge gradient value for alternative x at time step n [34].
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5 Convergence results

In this section we show that our policy is asymptotically optimal almost surely. That is, with
probability 1 it finds the best alternative in the limit. Since our policy is also myopically
optimal by construction, this lends strong theoretical support for the hope that it will work
well for finite budgets.

The proof given here is based on the convergence proof in Frazier et al. [11] for kernel
estimation.

Theorem 1 If there is at least one i such that Ki
(
x, x ′) > 0 for all x, x ′ ∈ X , then in the

limit, the KGNP policy measures every alternative infinitely often, almost surely.

Proof We start by defining Ω0 as the almost sure event for which Lemmas 1, 2, 3, 4
(in Appendix A) hold. For any ω ∈ Ω0, we let X ′(ω) be the random set of alternatives
measured infinitely often (i.o.) with the KGNP policy. Assume that there is a set G ⊂ Ω0,
with strictly positive probability such that for all ω ∈ G, X ′(ω) � X . That is with positive
probability, there is at least one alternative that we measure for a finite number of times. Fix
any ω ∈ G, and let N1 be the last time we measure an alternative outside X ′(ω) for this
particular ω.

Let x ∈ X ′(ω); we first show that limn v
K G,n
x = 0. Note that f (z) = φ(z) + z�(z) is

an increasing function, and bn
j+1(x) − bn

j (x) ≥ 0 by the ordering of bn
j (x) for the KGCB

procedure. Then,

vK G,n
x ≤

∑

j=1,...,|X |−1

(bn
j+1(x) − bn

j (x)) f (0). (7)

From Lemma 4, it follows that limn bn
x ′(x) = 0∀x ′ ∈ X , and for j = 1, . . . , |X |

limn bn
j (x) = 0. Letting n → ∞ in the above inequality, we obtain, limn v

K G,n
x = 0. In

other words, the knowledge gradient value for infinitely often sampled alternatives goes to
zero in the limit.

Now, for the same ω ∈ Ω0, we consider x /∈ X ′(ω), an alternative that is not
measured infinitely often. We will show that limn v

K G,n
x > 0 for this alternative. Let

I := { j : lim infn bn
j (x) > 0}. From Lemma 4, we know that lim infn bn

x (x) > 0. As at least
one alternative has to be measured infinitely often in the limit, X ′(ω) is non empty, and by
Lemma 4, there is at least one x ′′ such that limn bn

x ′′(x) = 0. Combining the last two
statements, I and IC are both nonempty. Then, there is some N2 < ∞ such that,
min j∈I bn

j (x) > max j ′ /∈I bn
j ′(x) for all n > N2. For all n > N2 by the monotonicity

and positivity of f (z), we have

vK G,n
x ≥ min

j∈I, j ′∈IC
(bn

j (x) − bn
j ′(x)) f

(

−
∣∣∣∣∣

an
j+1 − an

j

bn
j (x) − bn

j+1(x)

∣∣∣∣∣

)

.

Now let U :=supn, j,x |an
j (x)|. By Lemma 2, U<∞. Then, supn, j,x |an

j (x)−an
j+1(x)|≤2U .

And for all n > N2, by monotonicity of f (z), we have

vK G,n
x ≥ min

j∈I, j ′∈IC
(bn

j (x) − bn
j ′(x)) f

(

− 2U

bn
j (x) − bn

j ′(x)

)

.

Letting, b∗ := min j∈I bn
j (x) > 0, we take the limit in n, and by the continuity of f (z),

we obtain

lim
n

vK G,n
x ≥ b∗ f

(−2U

b∗

)
> 0. (8)
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Then, for x ′ /∈ X ′, limn v
K G,n
x ′ > 0, and for x ∈ X ′, limn v

K G,n
x = 0. For x ′ /∈ X ′,

there will be some n > N1 such that v
K G,n
x ′ > v

K G,n
x ∀x ∈ X ′. That is, for some time after

N1, we will choose to measure an alternative outside X ′. However, this contradicts our first
assumption that X ′(ω) � X and that there was a last time N1 that we stopped measuring
alternatives outside X ′(ω). Then, X ′(ω) = X for all ω ∈ Ω0, that is we measure each
alternative infinitely often. ��
Corollary 1 Under the KGNP policy, limn μn

x = μx a.s. for each alternative x.

Proof By Theorem 1, every x is measured infinitely often. Then by the strong law of large
numbers,

lim
n

μ0,n
x = μx (a.s.).

Note that as all alternatives which are sampled infinitely often, we have,

lim
n

(σ i,n
x )2 → 0,

for all i ∈ K, x ∈ X . Now, fix x ∈ X , and ω ∈ Ω , and let K′ = {i ∈ K : limn ν
i,n
x (ω) = 0}.

Following the previous statement, these are the kernels which are equal to the true value in
the limit. Then, for any i /∈ K′, although limn(σ

i,n
x )2 → 0, as the estimator will be biased

(limn ν
i,n
x (ω) 	= 0), hence

lim
n

wi,n
x −→ 0.

That gives

lim
n

μn
x = lim

n

∑

i∈K
wi,n

x μi,n
x = lim

n

∑

i ′∈K′
wi ′,n

x μi ′,n
x = lim

n
μ0,n

x = μx .

��
In practice it is impossible to measure alternatives infinitely often, and it is reasonable

to stop when there is a high probability that the best alternative is chosen. If Assumption 1
holds, then by invoking Proposition 1, we can use the variance of the estimator as a measure
of confidence.

Corollary 2 Let x∗ = arg maxx μn
x , and define κx as

κx = E

[
�

(μx∗ − zx

σ n
x∗

)]
,

where zx ∼ N (
μn

x , (σ
n
x )2

)
with σ n

x given in Proposition 1. If Assumption 1 holds and if we
stop measuring when

∑

x 	=x∗
κx ≤ δ,

then, x∗ is the alternative with the highest value with probability 1-δ.

The proof is trivial and is omitted. The result follows easily by calculating the probability
that a normal random variable is larger than another normal random variable, and then by
bounding above the probability with a union bound. Also note that an analytical form for κx

does not exist. It can be estimated by using Monte Carlo methods or Laplace approximation.
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Fig. 1 Estimates given by different kernel estimation methods. On the left (Fig. 1a) are two estimators that
use local bandwidths (h=1 in blue and h=4 in red). The true value of the function (μx ) is shown in green.
More global estimators (h=32 (blue) and h=128 (red)) are given on the right (Fig. 1b). (Color figure online)

6 KGNP demonstration

To show how our method works, we consider maximizing over a one-dimensional Gaussian
process with correlation coefficient ρ = 0.40 and measurement variance λ = 0.01. More
details about these functions are given in Sect. 8.1.1. The generated function is plotted by
dotted lines in Fig. 1a, b. We start with a non-informative prior, where we pick μ0

x = 0 and
β0

x = 0 for all alternatives x . For bandwidths of the kernels we choose h = {4, 32, 128} as
our dictionary. Each estimation method ki ∈ K uses a local linear fit and the kernel function
is Epanechnikov with bandwidth hi . Local linear fitting is used as it is known to have less
asymptotic bias and variance than Nadaraya-Watson or Gauss-Muller estimates when the
points are highly clustered [9].

We run our policy for 50 time steps, and plot the estimates at the base level (k0) and with
k1 in Fig. 1a. In Fig. 1b, we plot our estimates with k2 and k3. The combined estimate which
is calculated by weighting the kernel estimates by their inverse estimated MSEs is given in
Fig. 2a. And in Fig. 2b, we plot the weights used for the main estimate.

7 Extension of the main algorithm

In this section, we consider an extension of the estimation method proposed in Sect. 3. This
extension uses a different weighting scheme, which is common for aggregation techniques
in the machine learning community. Here, we employ the sequential method proposed in [5].

The proposed method uses a tuning parameter η > 0 fixed in the beginning. Then, given

that we are at time period n, we let Cm (i) = ∑m
j=1

(
y j − μi

x j−1

)2
for all m ≤ n. Then, we

choose the weights given by,

wi
x = wi = 1

n

n∑

j=1

exp
(−ηC j (i)

)

∑
i ′∈K exp

(−ηC j (i ′)
) .
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Fig. 2 Combined estimator and its weights. On the left (Fig. 2a) true values (μx ) versus the combined
estimator (μ50

x ). On the right (Fig. 2b): The weights used for the main estimator (w50
x ). The weights are

inversely proportional to each estimation method’s MSE. Darker colors represent that local estimators were
used. Note that local esimation methods are used in the region around the function’s maximum. (Color figure
online)

To obtain their theoretical bounds on the error of this estimation procedure, Bunea and
Nobel [5] pick η as

η = (
2 (B1 + B2)

2)−1
,

where for all n and x, B1 and B2 satisfy,
∣∣yn

x

∣∣ ≤ B1,
∣∣μn

x

∣∣ ≤ B2 and B1 > B2. Therefore we

choose to bound the highest upper value by maxx

(
|μx | + 3

(
βn

x

)−1/2
)

and let η as,

η =
(

2
(

max
x

∣∣μ0,n
x

∣∣ + 3
(
βn

x

)−1/2
)2

)−1

.

This estimator behaves very differently than the one proposed in Sect. 3 that uses MSE,
and thus the resulting KGNP policy is different.

8 Numerical experiments

To evaluate our policy numerically, we ran our algorithm on continuous functions on R
d where

the goal was finding the global maximum of the function. The functions were chosen from
commonly used test functions for similar procedures. We followed an empirical Bayesian
setting and started with a non-informative prior. We used zero as the prior mean and our
prior precision, that is μ0

x = 0 and β0
x = 0. At each time step, we evaluated the function and

obtained a noisy estimate. This is in line with the methods used in simulation optimization
where the optimizer sees the function as a black box and only obtains the value at given
points.

As our algorithm is based on problems with a finite number of alternatives, we discretized
the set of alternatives and used an equispaced grid on R

d . Although our method is theoreti-
cally capable of handling any finite number of alternatives, computational issues limited the
possible number to values on the order of 103.

We compared our algorithm against others in three different settings. In Sect. 8.1, we
present the results from applying our policy to one-dimensional Gaussian processes and
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Fig. 3 Gaussian processes with different ρ

compare it against three offline learning methods. In Sect. 8.2, we use multi-dimensional test
functions for comparison and in Sect. 8.3 we present an application example.

We compare our method against three alternatives: Exploration (Expl) is a policy where an
alternative is chosen at random at every time step. Sequential Kriging optimization (SKO) is a
black-box optimization method that fits a Gaussian process onto the observed variables [23].
Finally, the knowledge gradient with correlated beliefs (KGCB) is the method presented in
Sect. 4.1. However, in our numerical comparisons, KGCB assumes that the covariance matrix
is known beforehand, although this is not the case in empirical applications. Therefore, it is
expected to outperform all other methods. We denote KGNP-MSE as the policy introduced
in Sect. 4.2 and KGNP-EXP as the policy that uses the estimation method given in Sect. 7.

8.1 One-dimensional test functions

In this section, we compare our algorithm on one-dimensional Gaussian processes against
three other methods listed above. Comparisons are done in two main settings: In Sect. 8.1.1,
we give the results using Gaussian processes with homoscedastic covariance functions. These
are multi-variate normal distributions where the covariance between two variables depends
only on the distance between them. In Sect. 8.1.2, we present the results from our numerical
experiments on Gaussian processes with heteroscedastic covariance functions, where the
covariance terms depend both on the places of the alternatives and the distance between
them.

8.1.1 Gaussian processes with homoscedastic covariance functions

In order to evaluate our method on one-dimensional functions, we generated a set of zero-
mean, one-dimensional Gaussian processes on a finite interval. Our measurement set was
fixed as the integers from 1 to 100 and we used the exponential covariance function

Cov(i, j) = σ 2 exp

(
− (i − j)2

((M − 1)ρ)2

)
,

which gives a homoscedastic process with variance σ 2 and length scale ρ. A high σ 2 gives
a function that varies more in the vertical axis whereas a high ρ value generates a smoother
function with a smaller number of peaks and valleys. In Fig. 3, we plot randomly generated
Gaussian processes with different values of ρ to show the smoothing effect as ρ is increased.
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Fig. 4 Comparison of policies on homoscedastic GP using λ = 0.01 and various values of ρ

For all of the one-dimensional examples below, we fixed σ 2 at 2 and the measurement
variance λ at 0.01. We varied ρ in each experiment. For all kernel esimators we used a
Epanechnikov kernel.

We tested on two different combinations of the smoothing parameter ρ, 0.05 and 0.10. For
both of these values, we generate 10 functions which gives us 30 different test functions. For
each function, we tested each policy 32 times. We used opportunity cost as the performance
indicator in each run:

max
y

μy − μx∗ ,

where x∗ := arg maxx μN
x . We averaged the opportunity costs for policies for each different

set of parameters over ρ. The only tuning parameter for our method is the set of kernel
functions and the bandwidths that we start with. For these runs, we used six different kernel
estimators, where each of them fit one-degree polynomials (linear fits) but with different
bandwidths. We picked the bandwidth size as a geometric series (h = 2, 22, . . . , 26 = 64).
The opportunity costs on a log scale for different policies are given in Fig. 4.

It is seen that although the KGNP policy outperformed the exploration policy, it under-
performed SKO when ρ = 0.10. This is expected as we are maximizing over a Gaussian
process and SKO fits a Gaussian process to the evaluated function values. KGNP does not
assume any structure and therefore has a slower rate of convergence. For the experiments
where ρ = 0.05, the generated functions had more peaks and valleys, and SKO performed
worse than KGNP. This is most likely due to the fact that SKO was not able to estimate ρ and
therefore used a more smoothed estimator. Also, KGCB outperformed all other methods, as
it was given knowledge of the true covariance stucture before it started making evaluations.

8.1.2 Gaussian processes with heteroscedastic covariance functions

Our method easily adapts to heteroscedastic covariance functions as it uses a non-parametric
estimation method. To show its performance in these situations, we repeated the same experi-
ment in the previous section using a heteroscedastic covariance function. We chose to use the
Gibbs covariance function [16] as it has a similar structure with the exponential covariance
function but is heteroscedastic. The Gibbs covariance function is given by,

Cov(i, j) = σ 2
(

2l(i)l( j)

l(i)2 + l( j)2

)1/2

exp

(
− (i − j)2

l(i)2 + l( j)2

)
,
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Fig. 5 Effect of varying ρ for the heteroscedastic Gibbs Gaussian process on the covariance functions and the
function values: ρ values are respectively 2π and 4π . Graphs on the top are different functions with varying
ρ values and below are their corresponding covariance matrices. Black and white dots correspond to zero and
one correlation, respectively

where l(i) is an arbitrary positive function in i . In our experiments, we used a horizontally
shifted periodic sine curve for l(i)

l(i) = 10
(

sin
(
ρ

π

2
(i + c1)

)
+ 1

)
+ 1,

where ρ determines the periodicity of the covariance function and c1 is a random number
with a uniform distribution on [0, 100] and is used to shift the curve horizontally. For the
experiments, we varied ρ from 2π to 4π and the measurement variance λ in each experiment.

The effect of varying ρ for the overall covariance function and the resulting Gaussian
process is given in Fig. 5.

For the calculation of the opportunity cost, we followed the same setup given in the
previous section. The logarithm of the opportunity costs versus iterations are given in
Figs. 6 and 7.

It is seen that although SKO had a slightly faster rate of convergence in the first few
iterations, it did not converge in the limit. This is due to the fact that we have a heteroscedas-
tic covariance function and the bandwidth estimation for SKO can only handle homoscedas-
tic Gaussian processes. One could adapt the estimation procedure in SKO to handle such
covariance functions but it would require implementing non-parametric methods to estimate
l(i) as it can take any form. Therefore, in these setups where the function is expected to
have a heteroscedastic covariance function without any specified structure, non-parametric
methods will almost always have better convergence than parametric methods. Also, we
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Fig. 6 Comparison of policies on heteroscedastic GP using λ = 0.01 and various values of ρ
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Fig. 7 Comparison of policies on heteroscedastic GP using λ = 0.25 and various values of ρ

note that, KGCB had the perfect information of the heteroscedastic covariance function and
therefore converged very rapidly.

8.2 Two-dimensional functions

We experimented with two test functions introduced in [4] and [23]. The forms, domains
and the sources of these functions are given in Table 1. We compared the performance of
KGNP versus SKO by testing the policies over different measurement noise levels. As KGNP
works on a finite grid, we discretized each interval into 30 parts, which gives 961 (31 × 31)

different alternatives. For each measurement noise level, we ran both of the policies 100
times and we did 50 iterations during each run. Opportunity cost was calculated following
the same procedure in Sect. 8.1.1. To estimate the bandwidth parameter for SKO, the first
six evaluations were done using a Latin hypercube square design. The results are given in
Table 2.

It appears that although KGNP did not outperform SKO, the results are comparable.
However, this behaviour is expected since we are using a non-parametric method that starts
with almost no assumptions on the function. It is also seen that KGNP performed worse in
environments with high noise, as higher observation noise with a small number of iterations
forced the policy to use kernels with larger bandwidths. Therefore, using more smoothed
estimates made the optimization more difficult.
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Table 1 Two-dimensional functions for numerical experiments

Name Functional form Domain Source

Six-hump f (x) = 4x2
1 − 2.1x4

1 + 1
3 x6

1 x ∈ [−1.6, 2.4] [4]

Camelback +x1x2 − 4x2
2 + 4x4

2 ×[−.8, 1.2]

Tilted Branin f (x) = (x2 − 5.1
4π2 x2

1 + 5
π x1 − 6)2 x ∈ [−5, 10] [23]

+10(1 − 1
8π

) cos(x1) + 10 + 1
2 x1 ×[0, 15]

Table 2 Expected opportunity cost after 50 iterations for two-dimensional test functions

KGNP-MSE KGNP-EXP SKO

Test function λ E (OC) SE E (OC) SE E (OC) SE

Six hump camelback .122 .0310 .0012 .0504 .0062 .0321 .0030

.242 .1243 .0281 .2365 .0249 .0495 .0044

Tilted Branin 22 .8414 .2661 .6815 .0650 .2390 .0158
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Fig. 8 Average opportunity costs for methods with respect to variance of noise (λ). Error bars for 95 %
confidence intervals are also plotted

To illustrate the disadvantage of KGNP versus SKO in higher noise environments, we
repeated the numerical experiment with the Six-Hump Camelback test function. We varied
the noise variance λ from 0.01 to 1 and calculated the opportunity cost after the 50th iteration.
For each noise level, we repeated the experiment for 100 times. The opportunity costs with
respect to the changing noise level is given in Fig. 8.

From the results in Fig. 8, we see that SKO and KGNP-MSE perform almost at the same
levels with noise variance less than 0.7. After a certain point (λ = 0.75), KGNP’s performance
deteriorates.
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Fig. 9 Performance of KGNP and SKO for the Black-Box System (Objective ±2 Standard Error). Each policy
was ran 20 times. To estimate the objective values for iteration, after each run, the values for implementation
decisions are estimated using all the data

8.3 Application example

We implemented the KGNP policy to optimize a black-box simulator that estimates the value
for pumped-hydro power storage. These are fairly common energy storage devices that store
the energy simply by pumping the water to a higher reservoir. To release the stored energy,
the water is released through turbines. Energy is stored during off-peak hours and is released
during peak hours. As the price of electricity fluctuates significantly throughout the day,
substantial revenues can be made if energy is stored and released at proper times.

The simulator we used had two inputs that determine the policy: The first parameter
determines a price limit (for the hourly energy prices) for which all power is released from
storage. The second parameter similarly defines a price limit for which we stop releasing
power and start pumping in energy. In between, the level of buying decreases with exponential
decay. The parameter intervals are [60, 80] and [45, 60]. Then, given two inputs within these
intervals, the black-box simulated the operations of a pumped-water power storage using
historical energy prices and gave an estimate of the revenue using the previously described
policy.

A single evaluation from the black-box takes about a minute, and as a result we were
looking for an optimization policy that can converge quickly to the optimum policy. We ran
both KGNP using both weighting methods and SKO for 20 runs, each with 50 evaluations.
The average of the results along with a 95 % confidence interval are given in Fig. 9.

It is seen that KGNP converged much more quickly than SKO. We also note that, since
we do not know the true optimum values for this black-box function, a rigorous comparison
is not possible.

9 Conclusion

In this paper, we have presented a sequential measurement policy for offline learning
problems. We estimate the value function by aggregating a set of kernels with varying
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bandwidths. Aggregation is done using weights that are inversely proportional to the estimated
mean square error. Then, we adapt the correlated knowledge gradient procedure using the
covariance structure created by the kernel estimators [11]. Therefore, our method employs
the knowledge gradient with a time-dependent covariance matrix where a higher weight is
put on covariance matrices with better estimation.

We show that our policy is asymptotically optimal by showing it measures every alternative
infinitely often and finds the best alternative in a finite set with probability 1 as the number
of iterations n goes to ∞. We close with numerical results on single and two-dimensional
functions. For one dimension, we test and compare our policy against several other policies
on randomly generated Gaussian processes. For higher-dimensions, we employ commonly
used test functions from the literature. Numerical experiments in these settings demonstrate
the efficiency of our policy.

Although our policy performs very well in the numerical experiments, there is a caveat.
Kernel estimation is known to suffer from the curse of dimensionality as the MSE proportional
to hd where h is the bandwidth and d is the number of dimensions. If observations lie in
high dimensional spaces, non-parametric estimation is known to have a poor performance.
Because of these reasons, the efficiency of our estimation method also degenerates in higher
dimensions. Additive models might be used to handle this curse but this requires making
more assumptions on the structure of the function.

10 Proofs

In this section, we provide the proofs for the propositions and the lemmas used in the paper.
For simplicity, when there is no confusion, we use K (x, x ′) to denote Ki (x, x ′).

10.1 Proof of Proposition 1

Proof Let C be a generic subset of K. We first show that for any such C, the posterior of μx

given μ
i,n
x , for all i ∈ C is normal with mean and precision given by,

μC,n
x = 1

βC,n

(

β0
x μ0

x +
∑

i∈C
((σ i,n

x )2 + νi
x )

−1μi,n
x

)

,

βC,n
x = β0

x +
∑

i∈C
((σ i,n

x )2 + νi
x )

−1.

Then, the proposition follows by letting C = K.
Using induction, we first consider C = ∅, then clearly the posterior is the same as the prior

(μ0
x , β

0
x ) and the above equation holds as well.

Now, assume the proposed equations for the posterior distribution hold for all C of
size m, and consider C′ with m + 1 elements (C′ = C ∪ { j}). By Bayes’ rule

PC ′(μx ∈ du) = PC (μx ∈ du|Y j
x = h) ∝ PC (Y j

x ∈ dh|μx = u)PC (μx ∈ du).

where Y j
x stands for the observations for kernel j . Using the previous induction statement

PC (μx ∈ du) = ϕ((u − μC,n
x )/σC,n

x ).
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By the independence assumption,

PC (Y j
x ∈ dh|μx = u) = P(Y j

x ∈ dh|μx = u)

=
∫

R

P(Y j
x ∈ dh|μk

x = v)P(μk
x = v|μx = u)dv

∝
∫

R

ϕ((μ
j,n
x − v)/σ

j,n
x )ϕ((v − u)/

√
ν

j
x )dv ∝ ϕ

⎛

⎝ μ
j,n
x − u

√
(σ

j,n
x )2 + ν

j
x

⎞

⎠ .

Combining PC (Y j
x ∈ dh|μx = u) and PC (μx ∈ du), we obtain

PC ′(μx ∈ du) ∝ ϕ

⎛

⎝ μ
j,n
x − u

√
(σ

j,n
x )2 + ν

j
x

⎞

⎠ ϕ((u − μC,n
x )/σC,n

x ) ∝ ϕ((u − μC ′,n
x )/σC ′,n

x ).

This gives us the desired result. ��
10.2 Proofs of Lemmas

This section contains the lemmas used for proving Theorem 1.

Lemma 1 For all x ∈ X , lim supn maxm≤n

∣∣∣μ0,m
x

∣∣∣ is finite almost surely (a.s.).

Proof We fix x ∈ X . For each ω, we let N n
x (ω) the number of times we measure alternative

x until time period n,

N n
x (ω) =

∑

m≤n−1

1{xm=x}.

N n
x (ω) is an increasing sequence for all ω and the limit N∞

x (ω) = limn→∞ N n
x (ω) exists.

We bound
∣∣∣μ0,n

x

∣∣∣ above by,

∣∣μ0,n
x

∣∣ ≤ β0
x

βn
x

∣∣μ0,0
x

∣∣ + βn
x − β0

x

βn
x

∣∣∣∣∣

∑n−1
j=1 1{xi =x}y j+1

x

N n
x (ω)

∣∣∣∣∣

≤ β0
x

βn
x

∣∣μ0,0
x

∣∣ + βn
x − β0

x

βn
x

|μx | + βn
x − β0

x

βn
x

∣∣∣∣∣

∑n−1
j=1 1{x j =x}y j+1

x − N n
x (ω)μx

N n
x (ω)

∣∣∣∣∣

= β0
x

βn
x

∣∣μ0,0
x

∣∣ + βn
x − β0

x

βn
x

|μx | + λx
(
βn

x − β0
x

)

βn
x

∣∣∣∣∣∣

n−1∑

j=1

1{x j =x}

(
y j+1

x − μx

)

λx

∣∣∣∣∣∣
.

βn
x −β0

x
βn

x
is bounded above by 1, and the first two terms are clearly finite, therefore we only

concentrate on the finiteness of the last term. Note that

(
y j+1

x −μx

)

λx
has a standard normal

distribution. As the normal distribution has finite mean, we let Ω0 be the almost sure event

where
∣∣∣y j

x

∣∣∣ 	= ∞ for all j ∈ N+. We further divide Ω0 into two sets,

Ω̂0 = {
ω ∈ Ω0 : N∞

x (ω) < ∞}
,
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where alternative x is measured finitely many times, and

Ω̂C
0 = Ω0\Ω̂0 = {

ω ∈ Ω0 : N∞
x (ω) = ∞}

where alternative x is measured infinitely often. We further define the event Hx as

Hx =
{
ω ∈ Ω0 : lim sup

n
max
m≤n

∣
∣μ0,m

x

∣
∣ = ∞

}
.

We will show that P

(
Ω̂0 ∩ Hx

)
= 0 and P

(
Ω̂C

0 ∩ Hx

)
= 0 to conclude that P (Hx ) =

P

(
Ω̂0 ∩ Hx

)
+ P

(
Ω̂C

0 ∩ Hx

)
= 0.

For any ω ∈ Ω̂0 ∩ Hx , let Mx (ω) be the last time that x is measured, that is for all
n1, n2 ≥ Mx (ω), N n1

x (ω) = N n2
x (ω). Then, we have that

Mx (ω)∑

j=1

λx 1{x j =x}

∣
∣
∣
∣
∣
∣

(
y j+1

x − μx

)

λx

∣
∣
∣
∣
∣
∣
= lim sup

n
max
m≤n

Mx (ω)∑

j=1

λx 1{x j =x}

∣
∣
∣
∣
∣
∣

(
y j+1

x − μx

)

λx

∣
∣
∣
∣
∣
∣

= lim sup
n

max
m≤n

m∑

j=1

λx 1{x j =x}

∣∣∣∣∣∣

(
y j+1

x − μx

)

λx

∣∣∣∣∣∣

≥ lim sup
n

max
m≤n

∣∣∣∣∣∣

m∑

j=1

λx 1{x j =x}

(
y j+1

x − μx

)

λx

∣∣∣∣∣∣

≥ lim sup
n

max
m≤n

∣∣μ0,m
x

∣∣ = ∞,

where Mx (ω) < ∞ by construction. However, this also implies that y j+1
x = ∞ or

y j+1
x = −∞ for at least one i , therefore ω /∈ Ω̂0 and we get a contradiction. Then,

P

(
Ω̂0 ∩ Hx

)
= 0.

To show that P

(
Ω̂C

0 ∩ Hx

)
= 0, we let Ji := 1{xi =x}

(
y j+1

x −μx

)

λx
and remind that Ji has a

standard normal distribution. We further define a subsequence G (ω) ⊂ N+ by,

G (ω) := {
j ∈ N+ : 1{x j =x} = 1

}
,

and we let J ∗ := (Ji )i∈G(ω). By construction, G (ω) has countably infinite elements for all

ω ∈ Ω̂C
0 . Here, we make use a version of the law of iterated logarithms [3] which states that,

lim sup
n

max
m≤n

∣∣Z̄n
∣∣ < ∞ (a.s.),

where Z̄n = ∑n
j=1 zi/n and z j are i.i.d. random variables with zero mean and variance 1.

We let Ω1 be the almost sure set where this law holds for Z̄n = J ∗
n , and the proof follows by

noting that P

(
Ω̂C

0 ∩ Hx ∩ Ω1

)
= 0. ��

Lemma 2 Assume that we have a prior on each point
(
β0

x > 0,∀x ∈ X )
, then for any x,

x ′ ∈ X , ki ∈ K, the following are finite a.s. : supn

∣∣∣μi,n
x

∣∣∣ , supn

∣∣an
x ′(x)

∣∣ and supn

∣∣bn
x ′(x)

∣∣.
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Proof For any x ∈ X , ki ∈ K and n ∈ N, let pi,n
x ′ = βn

x Ki (x,x ′)
∑M

j=1 βn
x Ki (x,x j )

. Clearly, for any x ′ ∈ X
all pi,n

x ′ ≥ 0 and
∑

x ′∈X pi,n
x ′ = 1. That is for any x ′ and n, pi,n

x ′ form a convex combination

of μ
0,n
x ′ . Then,

sup |μi,n
x | = sup

n

∣
∣
∣
∣
∣

∑M
j=1 βn

x Ki (x, x j )μ
0,n
x j

∑M
j=1 βn

x Ki (x, x j )

∣
∣
∣
∣
∣
= sup

n

∣
∣
∣
∑

pi,n
x μ0,n

x

∣
∣
∣ ≤ sup

n,x
|μ0,n

x |.

And the last term is finite by Lemma 1.
To show the finiteness of supn |an

x ′(x)|, we note that an
x ′(x) is a linear combination of μ

i,n
x

and μ
i,n
x ′ , where the weights for μ

i,n
x are given by

(
1 − βε

xn K (x,xn)

Ai
n+1(x,xn)

)
and the weight for μ

i,n
x ′

is
∑

i∈K w
i,n+1
x

βε
xn K (x,xn)

Ai
n+1(x,xn)

. These weights are between 0 and 1, and the finiteness follows.

To see supn |bn
x ′(x)|, first note that for any i ∈ K and any x, x ′ ∈ X ,

Ai
n+1(x, x ′) =

∑

x̂∈X
βn

x̂ K (x, x̂) + βε
x ′ K (x, x ′),

is an increasing sequence in n. And trivially, (σ n
x )2 = 1/βn

x is a decreasing sequence in n.
Then for any n ∈ N,

σ̃ (x, x ′, i)n =
√

((σ n
x ′)2 + λx ′)

βε
x ′ K (x, x ′)
Ai

n(x, x ′)
≤ σ̃ (x, x ′, i)0 < ∞.

As bn
x ′(x) is a convex combination of σ̃ (x, x ′, i) where the weights are given by w

i,n
x , it

follows that supn |bn
x ′(x)| is finite. ��

Lemma 3 For any ω ∈ Ω , we let X ′(ω) be the random set of alternatives measured infinitely
often by the KGNP policy. Fix ω ∈ Ω , then for any x /∈ X ′(ω) let x ′ ∈ X be an alternative
such that x ′ 	= x, Ki (x, x ′) > 0 for at least one ki ∈ K, and x ′ is measured at least once. Also

assume that μx 	= μx ′ . Then, lim infn

∣∣∣μi,n
x − μ

0,n
x

∣∣∣ > 0 a.s. In other words, the estimator

using kernel ki has a bias almost surely.

Proof As x /∈ X ′, there is some N < ∞ such that μ
0,n
x = μ

0,N
x for all n ≥ N . And

as μ
0,N
x = μ0

x +∑
m≤N βε

x yxm 1(xm =x)

β0
x +∑

m≤N βε
x 1(xm =x)

, it is given by a linear combination of normal random

variables
(
yxm

)
and is a continuous random variable.

As x 	= x ′ is at least measured once, and Ki (x, x ′) > 0, μ
i,n
x contains positively weighted

μ
0,n
x ′ terms. Also, using the assumption μx ′ 	= μx , μ

0,n
x ′ will not be perfectly correlated with

μ
0,n
x . Then, as both are continuous random variables, the probability that μ

0,n
x will be equal

to any cluster point of μ
i,n
x is zero a.s. That is lim infn

∣∣∣μi,n
x − μ

0,n
x

∣∣∣ > 0. ��
Remark If μx are generated from a continuously distributed prior (e.g. normal distribution),
then for all x 	= x ′, P(μx 	= μx ′) = 1 and the assumption for the previous lemma holds
almost surely.

Lemma 4 For any ω ∈ Ω , we let X ′(ω) be the random set of alternatives measured infinitely
often by the KGNP policy. For all x, x ′ ∈ X , the following holds a.s.:

– if x ∈ X ′, then limn bn
x ′(x) = 0 and limn bn

x (x ′) = 0,

– if x /∈ X ′, then lim infn bn
x (x) > 0.

123



J Glob Optim

Proof We start by considering the first case, x ∈ X ′. If Ki (x, x ′) = 0 for all i ∈ K, bn
x ′

(x) = bn
x (x ′) = 0 for all n by the definition. Taking n → ∞ we get the result.

If Ki (x, x ′) > 0 for some i ∈ K , showing limn bn
x ′(x) = 0 is equivalent to showing that

for all i ∈ K

σ̃ (x, x ′, i) =
√

((σ n
x ′)2 + λx ′)

βε
x ′ K (x, x ′)

Ai
n+1(x, x ′)

−→ 0.

As noted previously, Ai
n(x, x ′) is an increasing sequence. If x ∈ X ′, then we also have

that, βn
x → ∞, and

1

Ai
n+1(x, x ′)

≤ 1

βn
x K (x, x ′)

−→ 0.

Therefore limn bn
x ′(x) = 0 under this case as well. Showing limn bn

x (x ′) = 0, reduces to
showing that,

1

Ai
n+1(x ′, x)

−→ 0,

which is also given by above.
Now for the second result, where Ki (x, x ′) > 0 for some i ∈ K and x /∈ X ′; by the

definition of bn
x (x)

bn
x (x) ≥ w0,n+1

x σ̃ (x, x, 0) = w0,n+1
x

√
((σ n

x )2 + λx
βε

x

βn
x + βε

x K (x, x)
.

For a given ω ∈ Ω , let N be the last time that alternative x is observed. Then, for all
n ≥ N ,

βn
x = βN

x ≤ β0
x + Nβε

x < ∞.

Recall that (σ n
x )2 = 1/βn

x and λx = 1/βε
x , and that these terms are finite for a finitely

sampled alternative. For lim infn bn
x (x) > 0 to hold, we only need to show that the weight

stays above 0, that is,

lim inf
n

w0,n
x = lim inf

n

(
((σ

0,n
x )2)−1

∑
i ′∈K((σ

i ′,n
x )2 + ν

i ′,n
x )−1

)

> 0.

Almost sure finiteness of the numerator has been shown above, which means we only
need to show that

lim sup
n

∑

i ′∈K
((σ i ′,n

x )2 + νi ′,n
x )−1 < ∞.

First we divide the set of kernels into two pieces. Let K1(ω, x) be the set such that, for
ω ∈ Ω , there is at least one x ′ ∈ X ′ such that Ki (x, x ′) > 0. In other words, there is one
infinitely often sampled point (x ′) close to our original point (x) that has influence on the
prediction. Let K2(ω, x)=K\K1. Now as all terms are positive,

lim sup
n

∑

i ′∈K
((σ i ′,n

x )2 + νi ′,n
x )−1 ≤ lim sup

n

∑

i ′∈K1

((σ i ′,n
x )2 + νi ′,n

x )−1

+ lim sup
n

∑

i ′∈K2

((σ i ′,n
x )2 + νi ′,n

x )−1.
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For all ki ′ ∈ K1, we have that by Lemma 3, lim infn ν
i ′,n
x > 0, even if lim infn(σ

i ′,n
x )2 = 0,

the limsup for the first term on the right are finite. Finally, for all i ′ ∈ K2, as none of the
points using i ′ ∈ K2 using to predict μx are sampled infinitely often, letting

NX = max
x /∈X ′ Nx ,

where Nx is the last time point x is sampled, we have NX < ∞. Then, βn
x for all x /∈ X ′(ω)

is finite (and bounded above by NX (maxx /∈X ′ βε
x )) and

∑

i∈K2

((σ i,n
x )2 + νi,n

x )−1 ≤
∑

i∈K2

((σ i,n
x )2)−1

≤
∑

i∈K2

(
∑

x ′∈X βn
x ′ Ki (x, x ′))2

∑
x ′∈X βn

x ′ Ki (x, x ′)2

≤
∑

i∈K2

(
∑

x ′∈X NX (maxx /∈X ′ βε
x )Ki (x, x ′))2

∑
x ′∈X NX (maxx /∈X ′ βε

x )Ki (x, x ′)2 < ∞

where the last term does not contain n. Taking the limit supremum over n for both sides gives
us the final result. ��
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